If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2-4v=43
We move all terms to the left:
v^2-4v-(43)=0
a = 1; b = -4; c = -43;
Δ = b2-4ac
Δ = -42-4·1·(-43)
Δ = 188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{188}=\sqrt{4*47}=\sqrt{4}*\sqrt{47}=2\sqrt{47}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{47}}{2*1}=\frac{4-2\sqrt{47}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{47}}{2*1}=\frac{4+2\sqrt{47}}{2} $
| 42x+58=180 | | x^2-6+9=9 | | u/8+3=20 | | -6x+3(3x-19)=-30 | | y-9-4y=y+8-9 | | -9v-8=-5v | | j3=27 | | h/4-4=15 | | 3=2f-5 | | (x+10)+3x+x=180 | | 11x+9=-1 | | -2+7x=180 | | -201=7x+3(3x-35) | | 5d-7=4d+2 | | 7w=8+6w | | 6x/7x=8x/11x-2 | | 3a+12a=60 | | (m-4.7)÷3.5=1 | | 19.6^2+b^2=89.5^2 | | 5(4+x)=15 | | 74+9x=254 | | 72.25=(2x)(x) | | -9x^2-6x-11=0 | | 4.7g+7=1.7g+16 | | 72.25=2x^2 | | -15=-5-x+6x | | 384=2x-4(7x-44) | | 256=c2 | | 38y=597 | | 6x-7-8x=-x-7 | | 324=h2 | | 0.6m+1=-3 |